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Abstract
We examine multilayer structures as negative refractive index and left-handed
materials, and find that for one polarization there is a wide range (≈90◦) of
incident angle within which negative refraction will occur. This comes about
because the group velocity and the Poynting vector have a large component
parallel to the layers, no matter what the angle of incidence of the incoming
radiation is. This behaviour in turn comes from the large anisotropy of the
phase velocities. If one of the components is a ferromagnetic metal, the system
can be a left-handed material above the ferromagnetic resonance frequency.

There has been much recent interest in left-handed and negative refractive index materials.
Left-handed materials are materials in which the direction of energy flow of an electromagnetic
wave is opposite to the wavevector. In negative refractive material the component of the
average Poynting vector of an electromagnetic wave tangential to the interface changes sign
after refraction. The original idea focuses on materials with negative dielectric constants ε

and negative magnetic permeabilities µ [1, 2]. Isotropic left-handed materials with negative
dielectric constants and magnetic susceptibilities are also negative refractive index materials.
The first experimental demonstration of left-handed materials is on a system of split ring
resonators and wires [3]. Anisotropic materials that exhibit negative refraction are not
necessarily left handed [4–6]. The requirements for left-handed materials are also different.
Recently, Zhang and co-workers [7] demonstrated negative refraction at the interface of a
crystal with uniaxially anisotropic positive definite susceptibilities. This negative refraction
occurs when the angle of the incoming radiation is within a range θu from the surface normal.
The magnitude of the range θu depends on the degree of anisotropy [8].

In this paper we examine multilayer structures as negative refractive index and left-
handed materials. Our motivation is twofold. (1) In multilayer structures, the propagation
of electromagnetic waves can be exactly analytically calculated. This will provide us with
some assessment of different approximations that has been used in this area. (2) The system
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of metal–insulator multilayers is highly anisotropic: it is a metal for current flows along the
planes and an insulator for current flows perpendicular to the planes. Thus this system may
exhibit a wide range θu of incident angle within which negative refraction will occur. We find
that for a polarization with the macroscopic magnetic field H perpendicular to the wavevector
and parallel to the layers, there is a large range of incident angles that is close to 90◦ within
which the radiation is refracted negatively. This comes about because the group velocity and
the Poynting vector have a large component parallel to the layers, no matter what the angle
of incidence of the incoming radiation is. This anisotropic group velocity in turn comes from
the large anisotropy of the phase velocities. When the wavevector is parallel (perpendicular)
to the layers, the square of the phase velocity is inversely proportional to 〈µ〉a〈ε〉h (〈ε〉a〈µ〉a),
where the angular brackets with subscripts a, h stand for the arithmetic and the harmonic mean
respectively. For example: 〈ε〉a = cmεm +ciεi , 1/〈ε〉h = cm/εm +ci/εi where c j stands for the
volume fraction of component j . 〈ε〉a is of the same order of magnitude of the metal dielectric
constant whereas 〈ε〉h is of the order of magnitude of the insulator dielectric constant. These
two are very different. The different averages of the dielectric constant obtained here in the long
wavelength limit is very similar to the ‘form birefringence’ discussed by Born and Wolf [9].
The form birefringence focuses on the dielectric constants only. Here we have included the
magnetic susceptibility at the same time. Our system exhibits negative refraction over a wide
frequency range from the visible to microwave. Current systems exhibit negative refraction
over a limited range of frequencies near the microwave and suffer heavy losses (>20 dB). Our
system offers an alternative way to tackle this problem.

We begin by considering the propagation of electromagnetic waves in the multilayer
structure consisting of periodic arrays of two materials of thicknesses dm , di with d = dm + di .
The dielectric constant and the magnetic permeability of the two components are denoted by εm ,
µm (εi , µi ). There are two types of eigenstates for Maxwell’s equation: the H (E) polarization
where the macroscopic magnetic field H (electric field E) is perpendicular to the wavevector
and parallel to the layers. Our goal is to derive the dispersion relationships of the radiation for
these two polarizations in the long wavelength limit. For the H (E) polarization we denote
the direction of H (E) as the y direction and the normal to the multilayers as the x direction.
Any wavevector k can be decomposed into a component perpendicular to the planes and a
component parallel to the planes. The wavevector is in the xz plane with k = (kx, 0, kz). There
is no y component because the wavevector is perpendicular to the direction of H (E). The
frequency of the radiation will be denoted by ω. We define a ‘vacuum wavevector’ k0 = ω/c
where c is the speed of light.

To calculate the dispersion we solve Maxwell’s equation in each component separately.
The solution is then matched across the boundary [10, 11]. The solution of Maxwell’s equation
in each region j = m, i can be written in separable form as Ez j = Vj(x) exp(ikzz), Hy j =
X j (x) exp(ikzz) for the H polarization and Hz j = Vj(x) exp(ikzz), Ey j = X j (x) exp(ikzz)
for the E polarization. The wavevector kz , the component of the wavevector parallel to
the planes, is the same in both regions. The functions V and X are linear combinations
of plane wave solutions. X j = A j cos(p j x ′) + B j sin(p j x ′), Vj = i[−p j A j sin(p j x ′) +
p j B j cos(p j x ′)]/(k0τ j) where p j = (ε jµ j k2

0 − k2
z )

0.5. τ j = ε j (−µ j ) for the H (E)

polarization. x ′ = x for 0 < x < dm ; x ′ = x − dm for dm < x < di + dm . The constant
coefficients A j and B j can be determined from the continuity of the tangential components
of E and H across the boundaries and the ‘periodic boundary condition’: E(x + d) =
exp(ikxd)E(x), H (x + d) = exp(ikxd)H (x). Across the first interface, we get from the
continuity conditions[

Xm(x = dm)

Vm(x = dm)

]
= T(pm, dm, τm)

[
Xm(x = 0)

Vm(x = 0)

]
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where

T(p, d, τ ) =
[

cos(pd) −i sin(pd)τk0/p
−i sin(pd)p/τk0 cos(pd)

]
.

From the ‘periodic boundary condition’, we get[
Xi (d)

Vi(d)

]
= exp[idkx]

[
Xi (0)

Vi(0)

]
.

Multiplying the above two equations, we obtain an eigenvalue problem.[
Xi (0)

Vi(0)

]
= exp[−idkx]T(pm, dm, τm)T(pi, di , τi )

[
Xi (0)

Vi (0)

]
.

Simplifying the algebra4, we obtain finally the eigenvalue equation

cos(kxd) = cos φi cos φm − 0.5[κpi/pm + pm/(piκ)] sin φi sin φm (1)

where φ j = p jd j , κ = τm/τi . The corresponding eigenvector is given by Am = 1,
Bm = iW0τmk0/pm where W0 = [exp(ikxd) − M]/N . M = cos(pmdm) cos(pi di) −
pmτi sin(pidi) sin(pmdm)/(τm pi), N = ik0[cos(pmdm) sin(pi di)τi/pi + cos(pi di) sin(pmdm)

τm/pm]. Ai = U1, Bi = iW1τi k0/pi where U1 = cos(pmdm) + iW0τmk0 sin(pmdm)/pm,
W1 = V0 cos(pmdm) + ipm sin(pmdm)/(τmk0).

We next examine these results in the long wavelength limit with p j d j � 1. Using the
approximation cos(x) ≈ 1 − x2/2, sin(x) ≈ x we get from equation (1) after some algebra

k2
z (di

√
κ + dm/

√
κ) + (kxd)2/(di/

√
κ + dm

√
κ)

= k2
0(µiεi di

√
κ + µmεmdm/

√
κ). (2)

Putting in the expression for κ and simplifying, we get for the H polarization

k2
z /〈ε〉h + k2

x/〈ε〉a = k2
0〈µ〉a (3)

where the angular brackets with a subscript a stand for the arithmetic mean: 〈ε〉a = (dmεm +
diεi )/d , 〈µ〉a = (dmµm + diµi)/d . Similarly, angular brackets with a subscript h stand for the
harmonic mean: 1/〈ε〉h = (dm/εm + di/εi )/d .

For the E polarization, one interchanges ε with µ. From equation (6), we get the long
wavelength dispersion:

k2
z /〈µ〉h + k2

x/〈µ〉a = k2
0〈ε〉a. (4)

The system is also anisotropic. The real part of 〈ε〉a is negative. In this long wavelength limit
the corresponding eigenvector becomes

Xm = cos(pm x) + ikxτm sin(pm x)/[pm〈τ 〉a], (5)

Xi = cos(pi x
′) + ikxτi sin(pi x

′)/[pi〈τ 〉a]. (6)

We next look at the Poynting vector of the system. We first discuss the case of the H
polarization. We get

�H j = H0�yeikz z−iωt X j (x), (7)

�E j = H0

[
kz

k0ε j
�xX j (x) + i

1

k0ε j
�zX ′

j(x)

]
eikz z−iωt . (8)

4 Define a matrix U = T (pm , dm , τm)T (pi , di , τi ). One can show by direct computation that the determinant of the
matrix U is unity. The eigenvalue equation det(U − λ) = 0 reduces to a quadratic equation λ2 − 2zλ+ 1 = 0 where z
is the right-hand side of equation (1). The solution of this equation is λ = z ± (z2 − 1)0.5. If one calls z = cos kl, then
λ = exp(±ikl), as claimed.



L92 Letter to the Editor

The corresponding Poynting vector S j = E j × H∗
j is given by (as usual [12], it is the real part

of this expression that is of interest)

�Sj = H 2
0

(
− iX∗

j X ′
j

2k0ε j
�x + |X j |2kz

2k0ε j
�z
)

,

X j is a function of the spatial variable x . We calculate the mean Poynting vector by averaging
expressions involving Xm , X ′

m (Xi , X ′
i ) in the interval 0 < x < dm (dm < x < d + m + di ).

From equations (5) and (6), we can calculate the averages of expressions involving the function
X : 〈|X |2〉 = 1, 〈X∗ X ′〉 = ikxτ/〈τ 〉a.

The Poynting vector in the corresponding region is

�Sj = H 2
0

(
kx

2k0〈ε〉a
�x + kz

2k0ε j
�z
)

.

Averaging over the two types of layers, we get

�S = H 2
0

(
kx

2k0〈ε〉a
�x + kz

2k0〈ε〉h
�z
)

. (9)

This Poynting vector is parallel (antiparallel) to the normal of the constant ω contour, ∂ω/∂k,
if 〈µ〉a is positive (negative). If the imaginary parts of the susceptibilities are small so that the
wavevector is mostly real, the dot product of the wavevector and the Poynting vector is given
by

�k∗ · �S ≈ 1
2 k0〈µ〉a|H0|2. (10)

Thus if we can find a material with a negative average 〈µ〉a, Real[k∗ · S] < 0, the system will
be left handed. This may be achievable with ferromagnetic materials above the ferromagnetic
resonance frequency; we shall come back to this point later.

We next discuss the case of the E polarization. The electric and magnetic fields are given
by

�E j = E0�yeikz z−iωt X j(x), (11)

�H j = E0

[
− kz

k0µ j
�xX j (x) − i

1

k0µ j
�zX ′

j (x)

]
eikz z−iωt . (12)

The Poynting vector is now given by

�Sj = E2
0

(
− iX∗

j X ′
j

2k0µ j
�x + |X j |2kz

2k0µ j
�z
)

.

Substituting in the average of the function X j , we get

�Sj = E2
0

(
kx

2k0〈µ〉a
�x + kz

2k0µ j
�z
)

.

Averaging over the two components we get

�S = |E0|2
(

kx

2k0〈µ〉a
�x + kz

2k0〈µ〉h
�z
)

, (13)

�k · �S = 1
2 k0〈ε〉a|E0|2. (14)

The Poynting vector is again anisotropic. The same results are obtained if one approximates
the multilayer system as an anisotropic homogeneous system [5]. If the imaginary part 〈ε〉a is
small k ·S < 0. We next consider the multilayer structure of metals and insulators as a negative
refractive index material.
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Figure 1. The geometry of the refraction from the multilayer.

The geometry we have in mind is shown in figure 1. The plane of incidence is in the x ′z′
plane. The multilayers are at an angle f with respect to the y ′z′ plane. The incident radiation
comes in at an angle i with respect to the interface normal which is assumed to be in the z ′
direction. This geometry is a little bit different from the conventional arrangement with the
interface parallel to the layers. We are interested in the regime where the spacing is much
less than a wavelength and the wave is not confined in a single insulating region confined by
the metallic layers. Thus our structure is not operated as a waveguide. First consider the H
polarization. At frequencies of the order of GHz, the dielectric constant of the metal is much
larger than that of the insulator. 〈ε〉h ≈ εi d/di whereas 〈ε〉a ≈ εmdm/d . This result is valid
even when the imaginary parts of the susceptibilities of the metal are large. After refraction, the
x ′ component of the wavevector, qx′ is equal to the x ′ component of the incoming wavevector
kx′ = k0 sin i . The component of the wavevector of the refracted radiation parallel to the
layers is given by qz = qz′ cos f − qx′ sin f . The component normal to the layers is given by
qx = qz′ sin f + qx′ cos f . The frequencies of the incoming and refracted radiation are the
same. Since |〈ε〉a| 
 〈ε〉h, we get from equation (7) qz = k0(〈µ〉a〈ε〉h)

0.5. Again, because
|〈ε〉a| 
 〈ε〉h from equation (13) the Poynting vector is given by

�S ≈ H 2
0

qz

2k0〈ε〉h
�z. (15)

Thus no matter what angle the incident radiation comes in, it will always be refracted along the
direction of the multilayers. There is very strong negative refraction.

For the E polarization, since 〈µ〉a 
 〈µ〉h, we get from equation (17)

�S ≈ |E0|2 kz

2k0〈µ〉h
�z.

Again, the wave will be negatively refracted along the layer direction. In general 〈ε〉a will have
a significant imaginary part. From equation (8), we expect kz ≈ k0(〈ε〉a〈µ〉h)

0.5 to possess a
significant imaginary part. This mode will be heavily damped.

We close with a discussion of how to make 〈µ〉a negative. The obvious choice is to use
a ferromagnetic metal as one of the components of the multilayer system [14]. When the
magnetization is aligned along the z direction, the magnetic susceptibility of a ferromagnet is
a tensor given by [13]

µ̂F =
[

µd −iµ′ 0
iµ′ µd 0
0 0 1

]
(16)
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where

µd = 1 + ωm(ω0 − iαω)

(ω0 − iαω)2 − ω2
, (17)

µ′ = − ωmω

(ω0 − iαω)2 − ω2
. (18)

Here ω0 = γ | �H0| is the ferromagnetic resonance frequency, H0 is the effective magnetic
field in magnetic particles and may be a sum of the external magnetic field, the effective
anisotropy field and the demagnetization field; ωm = γ | �M0|, with γ the gyromagnetic
ratio and M0 the saturation magnetization of magnetic particles; α is the magnetic damping
coefficient; and, finally, ω is the frequency of incident electromagnetic waves. It is still
possible to solve Maxwell’s equations for the multilayer system analytically. The results
are algebraically complicated and not very illuminating physically. Here we consider the
case when the remanent magnetization of the ferromagnet is zero. The system consists of
domains with the magnetization forced by the shape anisotropy to lie in the yz plane but
otherwise randomly oriented. For frequencies of the order of GHz, the domain size is usually
much less than the wavelength. The magnetic susceptibility can be obtained by averaging µ̂F

over the different orientations of the magnetizations of the domains. The resulting magnetic
susceptibility becomes diagonal but anisotropic:

µ̂M=0 =
[

µd 0 0
0 µyz 0
0 0 µyz

]
(19)

where µyz = (µd +1)/2. It is still possible to solve Maxwell’s equation analytically. For the H
polarization, the magnetic susceptibility µm is now replaced by µyz . Above the ferromagnetic
resonance frequency ω0, if µd becomes negative enough that 〈µ〉a is also negative, then the
system can be considered a left-handed material.

For the E polarization,

�E = E0�yeikz z−iωt X (x), (20)

�H = E0

[
− kz

k0µd
�xX (x) − i

1

k0µyz
�zX ′(x)

]
eikz z−iωt . (21)

Now pm = (k2
0εmµyz − k2

z µyz/µd)
0.5, τm = µyz . The functional form for the

dispersion, equation (8), remains the same except now the different averages of the magnetic
susceptibilities involve different components of the tensor: 1/〈µ〉h = ci/µi + cm/µd ; 〈µ〉a =
ciµi + cmµyz . The conclusions reached previously remain qualitatively unchanged.

In conclusion, we propose that a multilayer structure can refract negatively. The physical
reason is that the group velocity is very anisotropic. In this paper we have assumed that
k j d j � 1. Typically, in multilayers d j can easily be made to be of the order of 10 Å. k j

is of the order of 2π(ε)0.5/(wavelength). For microwaves with wavelengths of the order of
millimetres (106 Å), ε is of the order of 105 [15]. No matter what the angle of incidence
is, the largest value of kd ≈ 10−2. For infrared radiation, the wavelength is of the order of
a micron (104 Å) and ε is of the order of 10. Again, for all possible angles of incidence,
the largest possible kd ≈ 10−3. Thus at different frequencies our condition can be easily
satisfied. The transmission in these types of systems can be estimated from the reflectivity
previously calculated [11]. In the infrared, for a Cu–Ge system, the reflectivity can be made as
low as 10%. For a thin enough system, a high transmission of 90% can be obtained. Typical
interface roughness is of the order of ångströms whereas the wavelengths of interest are more
than thousands of ångströms. The interface roughness is much less than a wavelength. There
are other structures that can work under the same philosophy. An example is an array of parallel
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cylinders (wires). For current flow parallel (perpendicular) to the wires, the system behaves like
a metal (an insulator). We have performed preliminary calculations, that suggest a very similar
scenario for that case as well.

STC thanks the physics department of the HKUST, where this work was started, for hospitality.
We thank P Sheng and W Y Tam for helpful discussion.
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